Integrated Project Member of the FET Proactive Initiative Complex Systems DELIS-TR-0052 Nash Equilibria in Discrete Routing Games with Convex Latency Functions

نویسندگان

  • Martin Gairing
  • Thomas Lücking
  • Marios Mavronicolas
  • Burkhard Monien
  • Manuel Rode
چکیده

We study Nash equilibria in a discrete routing game that combines features of the two most famous models for non-cooperative routing, the KP model [16] and the Wardrop model [27]. In our model, users share parallel links. A user strategy can be any probability distribution over the set of links. Each user tries to minimize its expected latency, where the latency on a link is described by an arbitrary nondecreasing, convex function. The social cost is defined as the sum of the users’ expected latencies. To the best of our knowledge, this is the first time that mixed Nash equilibria for routing games have been studied in combination with non-linear latency functions. As our main result, we show that for identical users the social cost of any Nash equilibrium is bounded by the social cost of the fully mixed Nash equilibrium. A Nash equilibrium is called fully mixed if each user chooses each link with non-zero probability. We present a complete characterization of the instances for which a fully mixed Nash equilibrium exists, and prove that (in case of its existence) it is unique. Moreover, we give bounds on the coordination ratio and show that several results for the Wardrop model can be carried over to our discrete model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrated Project Member of the FET Proactive Initiative Complex Systems DELIS-TR-0171 Approximating the Distortion

Kenyon et al. (STOC 04) compute the distortion between one-dimensional finite point sets when the distortion is small; Papadimitriou and Safra (SODA 05) show that the problem is NP-hard to approximate within a factor of 3, albeit in 3 dimensions. We solve an open problem in these two papers by demonstrating that, when the distortion is large, it is hard to approximate within large factors, even...

متن کامل

Integrated Project Member of the FET Proactive Initiative Complex Systems DELIS-TR-0295 Bookmark-driven Query Routing in Peer-to-Peer Web Search

We consider the problem of collaborative Web search and query routing strategies in a peer-to-peer (P2P) environment. In our architecture every peer has a full-fledged search engine with a (thematically focused) crawler and a local index whose contents may be tailored to the user’s specific interest profile. Peers are autonomous and post meta-information about their bookmarks and index lists to...

متن کامل

Nash Equilibria in Discrete Routing Games with Convex Latency Functions

We study Nash equilibria in a discrete routing game that combines features of the two most famous models for non-cooperative routing, the KP model [16] and the Wardrop model [27]. In our model, users share parallel links. A user strategy can be any probability distribution over the set of links. Each user tries to minimize its expected latency, where the latency on a link is described by an arb...

متن کامل

Integrated Project Member of the FET Proactive Initiative Complex Systems DELIS-TR-0023 An Experimental Study of Random Knapsack Problems

The size of the Pareto curve for the bicriteria version of the knapsack problem is polynomial on average. This has been shown for various random input distributions. We experimentally investigate the number of Pareto optimal knapsack fillings. Our experiments suggests that the theoretically proven upper bound of O(n3) for uniform instances and O(φμn4) for general probability distributions is no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005